Automatic Artifact Removal from Electroencephalogram Data Based on A Priori Artifact Information
نویسندگان
چکیده
Electroencephalogram (EEG) is susceptible to various nonneural physiological artifacts. Automatic artifact removal from EEG data remains a key challenge for extracting relevant information from brain activities. To adapt to variable subjects and EEG acquisition environments, this paper presents an automatic online artifact removal method based on a priori artifact information. The combination of discrete wavelet transform and independent component analysis (ICA), wavelet-ICA, was utilized to separate artifact components. The artifact components were then automatically identified using a priori artifact information, which was acquired in advance. Subsequently, signal reconstruction without artifact components was performed to obtain artifact-free signals. The results showed that, using this automatic online artifact removal method, there were statistical significant improvements of the classification accuracies in both two experiments, namely, motor imagery and emotion recognition.
منابع مشابه
EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach
Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...
متن کاملA Novel Semiblind Signal Extraction Approach for the Removal of Eye-Blink Artifact from EEGs
A novel blind signal extraction (BSE) scheme for the removal of eye-blink artifact from electroencephalogram (EEG) signals is proposed. In this method, in order to remove the artifact, the source extraction algorithm is provided with an estimation of the column of the mixing matrix corresponding to the point source eye-blink artifact. The eye-blink source is first extracted and then cleaned, ar...
متن کاملHybrid wavelet and EMD/ICA approach for artifact suppression in pervasive EEG.
BACKGROUND Electroencephalogram (EEG) signals are often corrupted with unintended artifacts which need to be removed for extracting meaningful clinical information from them. Typically a priori knowledge of the nature of the artifacts is needed for such purpose. Artifact contamination of EEG is even more prominent for pervasive EEG systems where the subjects are free to move and thereby introdu...
متن کاملADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features.
A successful method for removing artifacts from electroencephalogram (EEG) recordings is Independent Component Analysis (ICA), but its implementation remains largely user-dependent. Here, we propose a completely automatic algorithm (ADJUST) that identifies artifacted independent components by combining stereotyped artifact-specific spatial and temporal features. Features were optimized to captu...
متن کاملImproved ballistocardiac artifact removal from the electroencephalogram recorded in fMRI.
The simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance image (fMRI) is a promising tool that is capable of providing high spatiotemporal brain mapping, with each modality supplying complementary information. One of the major barriers to obtain high-quality simultaneous EEG/fMRI data is that pulsatile activity due to the heartbeat induces significant artifacts...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015